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An analytical treatment is given of the canonical problem of the generation of sound
when a locally rectilinear vortex is drawn through the clearance gap between a wall and
the square tip of a rigid blade at low Mach number. The mean flow in the neighborhood
of the blade tip is assumed to be locally two-dimensional, and is modelled by free streamline
potential flow theory, according to which the flow into the gap on the pressure side emerges
as a wall jet on the suction side. The additional vorticity shed from the tip (in accordance
with the unsteady Kutta condition) during the passage of the vortex is assumed to convect
at constant speed along the free streamline boundary of the jet. Sound is generated by a
dipole source, the magnitude and orientation of which are determined by the unsteady lift
experienced by the blade. We calculate the separate contributions to the radiation (i.e., to
the dipole strength) from the vortex and the shed vorticity. The sound is generated while
the vortex is within a distance from the blade tip comparable to the clearance, and has
wavelength which is order 1/M larger, where M is the characteristic Mach number of the
flow. The conclusions of this analysis are supported by an alternative, simplified treatment
in which the vortex motion through the gap is assumed to be steady and the shed vorticity
convects at a fixed distance from the duct wall rather than along the free streamline.
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1. INTRODUCTION

An important mechanism of sound production by rotors and fixed control surfaces is
related to unsteady surface forces induced by turbulence and discrete vortices [1–3]. To
estimate the level and character of the sound the flow must normally be determined by
numerical integration of the coupled Navier–Stokes equations and the stuctural equations
of motion. However, a small number of canonical fluid–structure interaction problems can
be treated analytically, typically when the Mach number is small, and their solutions are
of considerable value in assessing the efficiency and accuracy of different numerical
schemes.

When the working fluid is uniform, the principal aerodynamic sound sources in
turbomachines are quadrupole volume sources, the strengths of which are proportional to
the turbulence Reynolds stress, and dipoles distributed over solid surfaces. At low Mach
numbers the dipoles are usually dominant, and various analytical techniques have been
developed to estimate their contributions (e.g., see references [4–14]). In modelling such
interactions it is known that the motions and strengths of all of the vorticity interacting
with a surface must be included; in particular, it is usually necessary to take proper account
of additional vorticity generated at the surface during the interaction. For example, vortex
shedding from the trailing edge is known to have a considerable influence on the unsteady
lift experienced by an airfoil passing through a turbulent gust, and therefore on the sound
produced during blade–vortex interactions [15].
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In this paper we investigate analytically the canonical problem of the sound generated
when a vortex, shed, perhaps, from an appendage in a low Mach number duct flow (see
Figure 1), is entrained by the mean flow between a blade tip and wall. This regime is just
one of several possible rotor blade–vortex interactions that generate sound (the most
common involving the ingestion and possible ‘‘chopping’’ of the vortex by blades), and
is particularly important in underwater applications. The clearance between the blade and
wall is taken to be uniform, and the vortex is assumed to be forced at high Reynolds
number through the rectangular shaped gap between the blade tip and wall. Relative to
the blade, the vortex is accelerated into the gap on the pressure side of the blade within
a locally two-dimensional ‘‘sink’’ flow, and emerges at high speed on the suction side within
a wall-jet. During this unsteady interaction additional vorticity is shed into the jet from
the blade tip. Both the ‘‘incident’’ and shed vorticity produce unsteady forces on the blade,
and the aggregate force determines the strength of the equivalent acoustic dipole source.
To calculate the value of this force it is assumed that the shed vorticity convects within
a thin vortex sheet in the shear layer of the wall jet, and the vortex sheet strength is
obtained by application of the Kutta condition at the blade tip. The analytical problem
is similar to one investigated by Obermeier and von Schroeter [5], who examined the sound
produced during vortex motion through an infinitely long slit in a rigid plane, although
no account was taken of mean flow, nor of vortex shedding from the edges of the aperture.

The blade–vortex interaction is discussed in section 2, where the motion of the vortex
through the gap is determined by numerical integration of its equations of motion, and
the strength of the shed vorticity is calculated. The sound generated by the interaction is
estimated in section 3, and a comparison is made (in section 4) with the results of a simpler
approximation in which the vortex is assumed to translate at constant velocity relative to
the blade. Estimates given in section 4 indicate that the amplitude of the radiation is
comparable to that produced when the same vortex is chopped by the blade. Appendix
A contains a brief derivation of the acoustic Green’s function used in the calculations.

2. THE BLADE–VORTEX INTERACTION

2.1.    

A rotor with nominally rigid blades is located with its axis of rotation on the centerline
of a circular cylindrical duct in the presence of a low Mach number mean axial flow. An
axially orientated vortex is assumed to pass through the rotor plane between the duct wall
and the blade tips. It is required to estimate the aerodynamic sound generated when a blade
tip passes over the vortex.

Figure 1. A schematic of blade–vortex interaction in a duct.
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Figure 2. (a) The local co-ordinate system used to specify the interaction of the vortex and blade. (b) A
schematic of the local two-dimensional model.

The problem is simplified by means of the following hypotheses: (1) the duct is rigid
and sufficiently large that the influence of wall curvature may be neglected in the
interaction region; (2) a blade may be modelled as a rectangular strip of chord 2a, with
a uniform clearance bW a between the tip and duct wall; (3) the impinging vortex is aligned
with the blade chord during the interaction; (4) the vortex core radius is negligible.

To analyze the interaction with a single blade, introduce the local rectangular
co-ordinate system (x1, x2, x3) illustrated in Figure 2(a), the co-ordinate origin being at the
wall, symmetrically placed with respect to the blade. The x1-axis is normal to the blade,
and the x2-axis is directed radially inwards towards the rotor axis. The blade motion causes
fluid to be forced through the gap between the blade tip and the wall in the positive
x1-direction, as indicated in Figure 2(b). Since bW a, the relative fluid motion near the
blade tip resembles a two-dimensional sink-flow into the gap from x1 Q 0 and a wall jet
in x1 q 0. This high Reynolds number mean flow will be modelled locally by the
two-dimensional, incompressible, free streamline potential flow through a slit of width 2b
in an infinite plane [16, 17].
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2.2.    

Let the incident vortex have circulation G. The vortex motion through the gap according
to potential theory is calculated by the method of conformal transformation. This motion
is composed of three components: the induced velocity due to image vortices in the duct
wall and blade; convection by the mean free-streamline flow through the gap; and induced
motion caused by vorticity shed from the blade tip in accordance with the Kutta condition.
The last of these will be ignored, since it can be significant only after passage of the vortex
through the gap, when, however, the motion becomes dominated by the high speed jet.

Let z0(t)= x0(t)+ iy0(t) denote the position of the vortex at time t in the complex plane
z= x1 + ix2. By the usual procedure [16, 17] (details are given in reference [18]), when the
influence of unsteady vortex shedding is ignored, the equation of motion of the vortex can
be cast in the form

dx0

dt
−i

dy0

dt
=

3iGz0

4p(z2
0 + b2)

+
iG

2p(z2
0 + b2)3/2>0 z0

z(z2
0 + b2)

− c.c.1+Ujet −iVjet , (1)

where ‘‘c.c.’’ denotes the complex conjugate of the preceding quantity. The first two terms
on the right side represent the volocity induced by images in the rigid surfaces;
Ujet −iVjet =dw/dz (evaluated at z= z0), where w(z) is the velocity potential of the free
streamline flow through the gap, which is determined by the solution of

dw
dz

=iV/s(i exp(−pw/2bV)+ [{i exp(−pw/2bV)}2 −1]1/2), (2)

where V is the mean velocity (relative to the blade) in the jet in the plane of the gap, and
s= p/(p+2)1 0·61 [16, 17] is the contraction ratio, defined such that the asymptotic jet
velocity is V/s. Equation (2) can be integrated numerically to determine w=w(z) from
the initial condition w=ibV at z=ib (at the blade tip), and the solution used in equation
(1) to find the path of the vortex.

The results of such calculations are illustrated in Figure 3. Three typical vortex
trajectories (X(t), Y(t))= (x0(t), y0(t))/b are shown for the case G=(5p/9)Vb1 1·75Vb.
The vortex is released at a large, non-dimensional negative time Vt/b and allowed to

Figure 3. Typical vortex trajectories for various initial positions of the vortex as X= x/b:−a. The open
circles denote vortex positions at different non-dimensional times Vt/b for G=1·75Vb, d/b=0·5.
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Figure 4. A schematic illustration of shed vortex elements convecting along the free streamline of the wall jet.

translate towards the gap from x1 Q 0. If the starting position is too far from the duct wall,
the vortex does not penetrate the gap (as exemplified by the upper trajectory in the figure).
When the starting position is close to the wall, the trajectory is uniform until the vortex
enters the gap, where the concentration of the jet brings it closer to the wall. The open
circles on the intermediate trajectory shown in the figure denote positions of the vortex
at different times Vt/b (t=0 as the vortex crosses the plane of the gap at a distance
d=0·5b from the duct wall), and illustrate the acceleration of the vortex as it approaches
and enters the gap.

2.3.   

Unsteady vorticity shed from the blade tip during the passage of the vortex through the
gap is assumed to form a vortex sheet along the undisturbed free streamline of the wall
jet, as indicated schematically in Figure 4. The mean flow speed just inside the jet at this
streamline is constant and equal to V/s; we shall assume that the shed vorticity convects
along the free streamline at speed Vc =V/2s, which is marginally smaller than the mean
velocity in the plane of the gap. If s denotes the distance measured along the free streamline
from the blade tip, the shed vorticity can be represented in the form

V= g(t− s/Vc )d(s_)k, (3)

where g(t− s/Vc ) is the unsteady component of the circulation per unit distance along the
free streamline, s_ denotes distance measured in the normal direction from the streamline,
and k is a unit vector in the x3-direction.

The Kutta condition is applied at the blade tip by equating to zero the sum of the
singular velocities induced at the tip by the vortex G and the shed vorticity. The procedure
is similar in principle to the application of the Kutta condition at the trailing edge of a
thin airfoil subject to gust loading [19], and leads to the following integral equation for
g:

G(iz0 + c.c.)+g
a

0

g(t− s/Vc )(izs +c.c.) ds=0, (4)

where z0 and zs, respectively, denote the function

z= z/(z2 + b2)1/2 (5)
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evaluated at the current complex position z0(t) of the vortex, and at the point zs on the
free streamline which is at distance s along the streamline from the blade tip.

Equation (4) is solved by writing

g(t− s/Vc )=g
a

−a

g0(v) e−iv(t− s/Vc ) dv, (6)

and taking the Fourier transform of equation (4) with respect to time. This yields

g0(v)=

−Gg
a

−a

[iz0(t)+ c.c.] eivt dt

2p6g
a

0

[izs +c.c.] exp(ivs/Vc ) ds7
. (7)

Both of the integrals on the right side must be evaluated numerically, making use of the
numerical solution of equation (1) for the position z0(t) of the vortex G at time t, and of
the parametrization of the point zs on the free streamline in terms of the distance s (see
reference [18] for details).

3. THE AERODYNAMIC SOUND

3.1.   

When the vorticity V is known as a function of position and time, the aerodynamically
generated sound in low Mach number flow is conveniently calculated from the acoustic
analogy equation in the form [14]

{12/c2
0 1t2 −92}B=div(Vgv), (8)

where c0 is the speed of sound, v is the velocity, B=w+ 1
2v

2 is the total enthalpy, and w
is the specific enthalpy. When the specific entropy is uniform (as assumed in the present
problem), the local fluid density r is a function of the pressure p alone, and w= f dp/r( p).
Bernoulli’s equation [16, 17] then shows that B0−18/1t in those regions where the flow
is irrotational and defined by a velocity potential 8. B is therefore constant in steady
irrotational flow, and far from the interaction region perturbations in B represent radiating
sound waves. When the mean flow Mach number is negligible the acoustic pressure at large
distances from the source flow p1 r0B, where r0 is the mean density.

In the same low Mach number approximation, the motion of the blade may be ignored
in calculating the radiated sound, since it is then only the relative motions of the blade
and vortices that determine the radiated sound [13]. This is because at very low Mach
numbers the motion close to the blade is essentially incompressible (as assumed in equation
2), and the unsteady surface forces (i.e., the aeroacoustic dipole source strengths) are
determined by the relative motion of the blade and fluid. Thus, in calculating the radiation
we may assume the blade to be at rest, in which case it is clear from the identification
B0−18/1t (V= 0) that B must have vanishing normal derivatives on the blade and duct
wall.
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The solution of equation (8) which satisfies this condition together with the radiation
condition of outgoing wave behavior can be cast in the form

B(x, t)=−g g (Vgv)(y, t) ·
1G
1y

(x, y, t− t) d3y dt, (9)

where the Green function G(x, y, t, −t) has vanishing normal derivatives on the rigid
surfaces, and is the outgoing solution of equation (8) when the right side is replaced by
d(x− y)d(t− t), and the integration is over all times t and over the volume occupied by
the vortex sources. In the acoustic far field (=x=:a) B:p/r0, and G may be replaced by
its compact approximation, which is valid provided that the characteristic acoustic
wavelength is large compared to the chord 2a of the blade, which is always the case when
the Mach number is sufficiently small. For simplicity we make use of a Green function
that neglects the influence of finite duct diameter on propagation, i.e., the dominant
wavelength is assumed to be small compared to the duct diameter (or blade span). The
inclusion of such effects (which, in addition, must take account of duct termination
conditions) is not difficult in principle, but does not materially alter the fundamental nature
of the blade–vortex interaction, and can be accomplished by minor modification of results
given below. In Appendix A it is shown that the appropriate compact approximation is

G(x, y, t− t)1Y1 cos U

2p=x=c0
d'(t− t− =x=/c0), =x=:a, (10)

where the prime denotes differentiation with respect to the argument of the delta function,
cos U= x1/=x= represents the dipole directivity of the radiated sound, U being the angle
(shown in Figure 2(a)) between the observer direction (in x2 q 0) and the blade normal,
and

Y1 =
z(a2 − y2

3)

ln[(4/b)z(a2 + o2b2 − y2
3)]

Re(ln[j/b+z(j2/b2 −1)]), =y3=Q a,

=0, =y3=q a, (11)

where j= y2 + iy1.
In this formula, o is a constant that exceeds 1

4, but the precise value of which has little
or no influence on the magnitude of the radiation (see Apendix A). The approximation
is applicable to aeroacoustic sources located in the vicinity of the blade tip, indeed, the
derivative with respect to y of Re{ln[j/b+z(j2/b2 −1)]} (which will be recognized as the
two-dimensional approximation to the velocity potential of flow through the gap), is
significantly different from zero only for y in the neighborhood of the gap. Y1 vanishes
for =y3=q a, where the influence of the gap on sound generation is negligible.

3.2.   

There are two principal contributions to the aerodynamic sound integral (9). They
correspond, respectively, to the direct radiation produced by the incident vortex alone, and
to the sound generated by the vorticity shed from the blade tip.

For the incident vortex

Vgv=GkgvGd(x1 − x0(t))d(x2 − y0(t)), (12)

where (x0(t), y0(t)) is the position of the vortex at time t, calculated in section 2, and
vG =(dx0/dt, dy0/dt, 0) is its translational velocity. Substituting into equation (9) we find
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that the component pG , say, of the far field acoustic pressure attributable to the vortex
alone is given by

pG

r0
=−

Ga2b cos U

2pc0=x= $ d
dt

Re0dx0/dt−idy0/dt
z(j2

0 − b2) 1%[t]

, =x=:a, (13)

where the quantity in square brackets is evaluated at the retarded time [t]= t− =x=/c0 (i.e.,
at the retarded position j0 = y0 + ix0 of the vortex), and b is a constant arising from the
integration in equation (9) with respect to the chord-wise source co-ordinate y3 over the
interval −aQ y3 Q a:

b=g
1

−1

z(1− l2) dl

ln[(4a/b)z{1− l2 + o2(b/a)2}]
. (14)

The constant o0O(1), but its precise value is undetermined by the analysis presented in
Appendix A. However, when aw b the value of b is sensibly independent of o to a good
approximation. Thus, for 1Q oQ 5, b is given correct to two significant figures as follows:

a/b b

10 0·44
102 0·27
103 0·19

The vorticity (3) shed from the blade tip is distributed along the free streamline, and
vorticity at distance s along the streamline from the tip translates at velocity v=Vc t(s).
where t(s)0 (t1(s), t2(s)) is the unit tangent in the x1–x2 plane to the streamline. By making
use of the Fourier integral representation (6) of g(t− s/Vc ), the corresponding component
pg of the acoustic pressure can be expressed in the form

pg

r0
1Vca2b cos U

2pc0=x= g
a

−a

−ivg0(v)F(v) e−iv[t] dv, =x=:a, (15)

where

F(v)=g
a

0

Re0t1(s)− it2(s)
z(j2

s − b2) 1 eivs/Vc ds, (16)

and js = x2(s)+ ix1(s), where (x1(s), x2(s)) are the co-ordinates of a point distant s along
the free streamline from the blade tip.

3.3.  

Inspection of equations (13) and (15) indicates that the order of magnitude of the
acoustic pressure is r0y

2M, where y is a flow velocity and M= y/c0. This is characteristic
of an aeroacoustic dipole source. The dipole axis is normal to the blade, and its strength
is equal to the unsteady lift exerted on the blade during the passage of the vortex [13].

The solid curve in Figure 5 represents a typical predicted acoustic pressure signature
plotted as a function of the non-dimensional retarded time V[t]/b for b/a=0·1, when the
circulation of the incident vortex G= aVa and a= p/18 (i.e., G1 1·75Vb). This value of
G corresponds approximately to the strength of a tip vortex shed by an airfoil of chord
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2a and angle of attack a (1 10°). Time is measured from the instant at which the vortex
passes through the gap, and the initial conditions have been chosen to ensure that
d/b=0·5, where d is the distance of the vortex from the wall in the gap. The ordinate is
p(x, t)/p0, where

p0 =
r0V2Ga2 cos U

c0b2=x= (17)

accounts for the characteristic dipole amplitude and directivity. The sound is generated
predominantly when the vortex passes through the gap, during an interval of time of order
b/V. Its wavelength is therefore of order c0b/V0 a(b/a)/M (M=V/c0), which is large
relative to the blade chord provided that MW b/a.

Also plotted are the separate contributions pG /p0 (dotted curve) and pg /p0 (dashed) of
the sound generated by the incident vortex and the shed vorticity, respectively. For much
of the time these pressures are approximately of opposite phase and tend to interfere
destructively. In the analogous problem of thin airfoil theory, involving the interaction of
a vortex with a trailing edge, when both the incident and shed vorticity are assumed to
convect parallel to the airfoil at the same velocity, the cancellation is complete, and no
sound is generated when the vortex passes by the trailing edge [15]. In the present case
only partial cancellation occurs.

In Figure 6 is illustrated, for the same vortex strength G and for b/a=0·1, the
dependence of the acoustic pressure on the ratio d/b. The numerical results of section 2
show that the maximum value of d/b for which the vortex penetrates the gap (and is not
‘‘reflected’’ as in the upper trajectory of Figure 3) is about 0·68, and as d/b approaches
this value the amplitude of the acoustic radiation is seen to progressively increase. When
d/b is small, however, the acoustic amplitude becomes very small, because the upwash
induced on the blade by the vortex tends to be cancelled by that of an equal and opposite
image vortex in the duct wall.

Figure 5. The acoustic pressure p(x, t)/p0 (00) plotted as a function of the non-dimensional retarded time
V[t]/b for G=1·75Vb, b/a=0·1 and d/b=0·5. ,,,,,, Direct radiation pG/p0 from the incident vortex; - - - -,
radiation pg/p0 from the shed vorticity.
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Figure 6. The dependence of the acoustic pressure p(x, t)/p0 on d/b when G=1·75Vb and b/a=0·1. ,
d/b=0·6; ——, d/b=0·4; ---, d/b=0·2.

4. SIMPLIFIED ANALYTICAL APPROXIMATION

An entirely analytical treatment of the sound generation problem can be given in the
approximation indicated schematically in Figure 7. Since the sound is produced primarily
when the vortex is near the gap, its convection velocity is assumed to be constant and equal
to V, the mean velocity in the gap, and the vortex path is taken to be rectilinear, at a fixed
distance d from the duct wall. Similarly, the shed vorticity is assumed to convect at velocity
Vc parallel to and distance b from the wall (above the free streamline of the wall jet in
Figure 7).
When these assumptions are made most of the integrals in sections 2 and 3 can be

evaluated analytically. Thus, the solution (7) of equation (4) for the circulation of the shed
vorticity (where s now denotes distance from the blade tip in the x1-direction), becomes

g0(v)=
−(2G/pV) sinh (=v=d/V)K1(=v=b/V)

2 sinh (=v=b/Vc )K1(=v=b/Vc )+ pi sgn (v)I1(=v=b/Vc ) exp(−=v=b/Vc )
, (18)

where K1 and I1 are modified Bessel functions [20], and g0(−v)= g*0 (v), the asterisk
denoting the complex conjugate.

Figure 7. A simplified model of the blade–vortex interaction.
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Figure 8. Predictions of the simplified approximation of section 4. The acoustic pressure p(x, t)/p0 (00)
plotted as a function of the non-dimensional retarded time V[t]/b for G=1·75Vb and d/b=0·5. ,,,,,, Direct
radiation pG/p0 from the incident vortex; - - - -, radiation pg/p0 from the shed vorticity. b/a=0·1.

As =x=:a, the direct vortex sound pG and the sound pg generated by the wake vorticity
are found to be given by

pG

p0
(x, t)1−bb

2pV
Re$ 1

1t0 b
z{(d+iV[t])2 − b2}1%, (19)

pg

p0
(x, t)1 b

2p2 0Vc

V1
3

g
a

−a

l[2 sinh (l)K0(=l=)− ipI0(=l=) e−=l=]
2 sinh (=l=)K1(=l=)+ pi sgn (l)I1(=l=) exp(−=l=)

× sinh 0=l= dVc

bV1K10=l=Vc

V1 exp(−ilVc [t]/b) dl, (20)

where p0 is defined in equation (17), and [t]= t− =x=/c0 is the retarded time. These are
plotted as functions of V[t]/b in Figure 8 for b/a=0·1 and d/b=0·5. The solid curve is
the net acoustic pressure ( pG + pg )/p0.

In this constant velocity approximation to the motion of the incident vortex the
predicted direct acoustic pressure pG is an even function of the retarded position V[t] of
the vortex. This symmetry is absent from the more general result of Figure 5 because of
the accelerated motion of the vortex in the gap. However, there is good overall qualitative
and quantitative agreement between the present approximation and the numerical results
of Figures 5 and 6.

These results (and the more detailed predictions of section 3) indicate that the magnitude
of the acoustic pressure is of characteristic order

10−2r0V2G(a/b)2

c0=x= .

The corresponding strength of the sound produced when the vortex is severed by the blade
is [15]

r0U2Gza/R
c0=x= ,
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where U is the relative velocity of the vortex and blade, and R is the radius of the vortex
core. In practice, it is likely that V and U will be of the same order, and that, typically,
a/R0 a/b1 5–10. Thus, it appears that both mechanisms will produce sound of
comparable orders of magnitude.

5. CONCLUSIONS

Discrete-vortex rotor blade interactions are important sources of sound and vibration
in turbomachines. In this paper the methods of classical free streamline theory and the
Lighthill acoustic analogy have been combined to investigate the canonical problem of the
sound generated when a vortex is convected at low Mach numbers through the clearance
between a square blade tip and a neighboring wall. The mean flow near the tip of the
suction side of the blade has been modelled by a locally two-dimensional, potential flow
wall jet, and vorticity shed from the tip in accordance with the unsteady Kutta condition
has been assumed to convect at constant speed along the free streamline of the jet. The
net unsteady force exerted on the blade during the interaction gives rise to a dipole sound
source, in which the acoustic amplitude varies as r0y

2M, where y is a typical velocity and
M= y/c0, and we have calculated the individual contributions to the radiation from the
vortex and the blade-tip shed vorticity; the overall magnitude of the sound is comparable
to that which would be produced if the vortex were to be ‘‘chopped’’ by the blade. The
radiation is significant only when the distance of the vortex from the blade tip is less than
about the clearance b between the tip and wall, and the wavelength of the generated sound
is therefore of order b/M.

The numerical predictions are consistent with an alternative, simplified analytic model
in which the convection velocity of the vortex relative to the blade is constant, and the
shed vorticity translates at a fixed distance from the wall rather than along the free
streamline of the wall jet.
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APPENDIX A: COMPACT GREEN FUNCTION

The compact Green function G(x, y, t− t) for a stationary, rigid body with surface S
is an approximate solution of equation (8) with outgoing wave behavior when the right
side is replaced by the point source d(x− y)d(t− t) and when the normal derivatives
1G/1xn and 1G/1yn both vanish on S. If the mean flow Mach number is infinitesimal, so
that convection of sound by the flow can be neglected,

G(x, y, t− t)=
1

4p=X−Y= d(t− t− =X−Y=/c0), (A1)

where Xi = xi −8*i (x), Yi = yi −8*i (y) and 8*i is the velocity potential of ideal
incompressible flow that would be produced by rigid body motion of S at unit speed in
the i-direction (so that Xi and Yi are the potentials of flow past the fixed body having unit
speed in the i-direction at large distances from S [14].

The compact Green function can be used to solve equation (8) in the presence of the
rigid surface S provided that the characteristic acoustic wavelength of the sound is much
larger than the diameter of the body (i.e., the blade chord in the problem of section 3)
and either the observation point x or the source point y is many acoustic wavelengths from
S. In that case the body behaves as a dipole source the characteristics of which are correctly
determined by the compact approximation (A1). In the circumstances of this paper, where
the blade tips are in motion at low Mach number, it was shown by Howe [13] that the
sound produced by interaction with vorticity is the same as if the blades are taken to be
at rest, provided the relative motion between the blade and vorticity is unchanged.

In the application of sections 3 and 4, the compact Green function is modified by the
presence of the duct wall. We therfore consider first the determination of G when the wall
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is absent, but the mirror image of the blade in the wall is inserted. In this case we have
to determine X for an infinitely long, rigid strip of chord 2a containing a slit of width 2b
in the interval =x2=Q a. Far from the slit we have [16, 17]

X1 =Re [−iz(z2 − a2)], X2 = x2, X3 = x3 (z= x3 + ix1). (A2)

Very close to the slit, but at distances w b from the leading and trailing edges (x3 = 2 a)
of the blade, X1 must assume the form

X1 1
m(x3)

p
Re (ln [j/b+z(j2/b2 −1)]), j= x2 + ix1, =x3 2 a=w b. (A3)

Here X1 is the potential of a locally two dimensional flow through the slit, and m(x3) is
the volume flux per unit length of the slit. Near the leading and trailing edges of the blade
the flow represented by the exact form of X1 will tend to be around the edges of the blade
rather than through the slit, so that m(x3):0 as x3:2 a.

An approximate expression for the fundamental form of m(x3) can be obtained by
straightforward matching of the limiting forms (A2) and (A3) within an intermediate range
of distances from the slit. The details are given in reference [18], where it is shown that

m(x3)1
pz(a2 − x2

3 )

ln [(4/b)z(a2 − x2
3 )]

. (A4)

This is singular near =x3 2 a== b(b/32a)W b; i.e., very close to the leading and trailing
edges of the blade where, however, the matching procedure becomes invalid. Since m(x3)
must actually tend smoothly to zero at these edges, expression (A4) can be regularized by
writing

m(x3)1
pz(a2 − x2

3 )

ln [(4/b)z(a2 + o2b2 − x2
3 )]

, =x3=Q a,

=0 =x3=q a, (A5)

where the regularization parameter o0O(1), but must exceed 1
4 to remove the singularity.

Equations (A3) and (A5) determine the behaviour of the Green function for sources at
points y very close to the slit. For the actual problem, involving the presence of the rigid
wall at x2 =0, we use the method of images to find

G(x, y, t− t)1 1
4p=x= $d0t− t−

=x=
c0

+
x · Y
c0=x=1+ d0t− t−

=x=
c0

+
x · Y�
c0=x=1%, =x=:a,

where Y� 1 =Y1, Y� 2 = − y2 and Y� 3 = y3. This is further simplified for compact source
distributions in the vicinity of the gap by expanding the delta functions in powers of Y/co

and Y� /c0. The leading order terms in this expansion yield the dipole approximation

G(x, y, t− t)1 1
2p=x= 0x1Y1

=x=c0
+

x3y3

=x=c01d'(t− t− =x=/c0), =x=:a, (A6)

where the prime denotes differentiation with respect to the argument.
The second term in the brace brackets of equation (A6) may be omitted for aeroacoustic

source distributions that are independent of the chord-wise variable y3, and this leads
immediately to equation (10) of the main text.


